Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Genet ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386213

RESUMO

Discovering more novel antimicrobial compounds has become a keen research problem. In this study, YA215 genome was sequenced by the Illumina HiSeq + PacBio sequencing platform. Genome assembly was performed by Unicycler software and the gene clusters responsible for secondary metabolite biosynthesis were predicted by antiSMASH. The genome comprised 3976514 bp and had a 46.56% G + C content. 3809 coding DNA sequences, 27 rRNAs, 86 tRNAs genes, and 79 sRNA were predicted. Strain YA215 was re-identified as Bacillus velezensis based on ANI and OrthoANI analysis. In the COG database, 23 functional groups from 3090 annotations were predicted. In the GO database, 2654 annotations were predicted. 2486 KEGG annotations linked 41 metabolic pathways. Glycosyl transferases, polysaccharide lyases, auxiliary activities, glycoside hydrolases, carbohydrate esterases, and carbohydrate-binding modules were predicted among the 127 annotations in the CAZy database. AntiSMASH analysis predicted that B. velezensis YA215 boasted 13 gene clusters involved in synthesis of antimicrobial secondary metabolites including surfactin, fengycin, macrolactin H, bacillaene, difficidin, bacillibactin, bacilysin, and plantazolicin. Three of the gene clusters (gene cluster 5, gene cluster 9, and gene cluster 10) have the potential to synthesize unknown compounds. The research underscore the considerable potential of secondary metabolites, identified in the genomic composition of B. velezensis YA215, as versatile antibacterial agents with a broad spectrum of activity against pathogenic bacteria.

2.
Front Nutr ; 9: 1064764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505249

RESUMO

The increasing burden and health risks of antimicrobial resistance (AMR) pose a great threat to society overall. Lipopeptides exhibit great potential as novel and safe alternatives to traditional antibiotics. In this study, the strain YA215, which was isolated from the mangrove area in Beibu Gulf, Guangxi, China, was identified as Bacillus velezensis. Then, YA215 lipopeptide extracts (YA215LE) from B. velezensis was found to exhibit a wide spectrum of antibacterial and antifungal activities. Additionally, YA215LE was identified and found to contain three groups of lipopeptides (surfactin, iturin, and fengycin). Furthermore, one separation fraction (BVYA1) with significant antibacterial activity was obtained. Additionally, liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of BVYA1 showed three molecular ion peaks ([M + H]+: m/z 980.62; 994.66; 1008.66) corresponding to conventional surfactin homologs. By MS/MS analysis, BVYA1 was identified as sufactin with the precise amino acid sequence Glu-Leu/Ile-Leu-Val-Asp-Leu-Leu/Ile and hydroxyl fatty acids with 11-13 carbons. [M + H]+ at m/z 980.62 was detected for the first time in B. velezensis, which demonstrates that the strain corresponds to a new surfactin variant. In particular, BVYA1 showed antibacterial activity with the minimum inhibitory concentration (MIC) values of 7.5-15 µg/ml. Finally, the preliminary mechanism of inhibiting E. coli treated with BVYA1 showed that BVYA1 effectively permeabilized the cytoplasmic membrane and disrupted the morphology of targeted bacterial cells. In conclusion, this study suggests that the YA215LE from B. velezensis YA215 might be a potential candidate for a bactericide.

3.
Foods ; 11(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35205971

RESUMO

The object of this study was tilapia fish that were fried in soybean oil. Volatile compounds were extracted from the fish by ASE-HVE and were studied by GC-O-MS and the AEDA analysis method. A total of 30 aroma compounds were initially determined, and these compounds contribute to the aroma of fried tilapias. The key volatile compounds in fried tilapia were quantitatively analyzed by GC-MS, and the volatile compounds in soybean-fried tilapia were studied by flavor recombination and deletion experiments. Trimethylamine, hexanal, 2,3-dimethylpyrazine, dimethyl trisulfide, trans-2-octenal, 2,3-dimethyl-5-ethylpyrazine, (E)-2-nonenal, 2-propyl-pyridine, and (E,E)-2,4-decadienal were finally determined to be the key volatile compounds in soybean-fried tilapia.

4.
Front Nutr ; 8: 766415, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790690

RESUMO

With the increase in demand of fruit wine year by year, it is necessary to develop novel fruit wine with high functional activities. Prunus salicina Lindl. (named as Niuxin plum) is a remarkable material for brewing fruit wine owing to its suitable sugar-acid ratio, characteristic aroma and bioactive compounds. This study intends to modify the fermentation technology, identify and quantify nutritional compositions and volatile profiles, as well as bioactive substances in Niuxin plum wine, as well as evaluate the antioxidant and hypoglycemic activities in vitro of major bioactive components from Niuxin plum wine. According to single-factor and orthogonal tests, the optimal fermentation conditions of 13.1% vol Niuxin plum wine should be Saccharomyces cerevisiae Lalvin EC1118 at 0.1% and a fermentation temperature of 20°C for 7 days. A total of 17 amino acids, 9 mineral elements, 4 vitamins, and 55 aromatic components were detected in plum wine. Polysaccharides from Niuxin plum wine (named as NPWPs) served as the major bioactive components. The NPWP with a molecular weight over 1,000 kDa (NPWP-10) demonstrated extraordinary DPPH free radical scavenging capacity and α-glucosidase inhibitory activity among all NPWPs having different molecular weight. Moreover, the structural characterization of NPWP-10 was also analyzed by high performance liquid chromatography (HPLC), fourier-transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra studies. NPWP-10 was composed of mannose, rhamnose, arabinose, galactose and galacturonic acid with molar ratios of 2.570:1.775:1.045:1.037:1. NPWP-10 contained α-configuration as the main component and ß-configuration as the auxiliary component. This study highlights NPWP-10 is an importantly biological polysaccharide from Niuxin plum wine, as well as provides a scientific basis for developing the plum wine industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...